酸性土壤的特点篇1
关键词:成土母质;土壤;优势作物;湖南
中图分类号:F326.2文献标识码:A文章编号:1674-0432(2011)-04-0138-2
岩石是构成土壤的物质基础,它的矿物组成、结构、构造和风化特点,对土壤的理化性质和发育状况有着直接的影响,从而影响到农作物的生长、土壤的利用方式和生产布局等。湖南省的地质情况非常复杂,不同地质时代的岩层都有出露,构成了湖南省成土母质众多的特点。
湖南土壤以成土母质来划分,主要的土壤类型有板页岩黄红壤、棕黄壤,碳酸盐岩红壤,泥灰岩红壤、灰红壤,砂页岩红壤、灰黄壤、沙红壤,紫色碎屑岩紫色土、紫砂土,第四系红土土壤,冲积土,花岗岩麻砂土(红壤)[1]等。
1板页岩黄红壤、棕黄壤
板页岩黄红壤、棕黄壤的母质主要有赋存于冷家溪群、板溪群的板岩、粉砂质板岩、绢云母板岩等。矿质元素(可溶态)丰富,尤其是富含P、Mo、Cu、Mn、Fe,含Ca量最低,该类型土壤受其母质的影响,通透性好,保水保肥力强,颗粒构成适宜,含沙壤土,属于弱酸―酸性土。湖南省内主要分布在岳阳、古丈等地。板页岩黄红壤、棕黄壤较适宜生长杉、竹、梓、樟、松、茶叶(君山银针等)和油茶等作物。
2碳酸盐岩红壤
碳酸盐岩红壤的母质主要是赋存于寒武系中上统,奥陶系,泥盆系的灰岩、白云岩、白云质灰岩。矿质元素(可溶态)一般含Fe丰富,但含Mo、Mn、Mg、K较高,质地粘性强,保水保肥力强,通透性较差,土壤呈弱酸性,省内主要分布于张家界、湘西一带。碳酸盐岩红壤生长的主要优势作物有松、柏、油茶和枣等。
3泥灰岩红壤、灰红壤
泥灰岩红壤、灰红壤的母质主要是赋存于中泥盆统棋梓组下部、上泥盆统马鞍山组的泥灰岩夹泥质灰岩、钙质粉砂岩,矿质元素(可溶态)除Ca含量较高之外,其他矿质元素均较贫乏。该类型的土壤受其成土母质的影响,通透性差,含砂好,保水保肥力强,属于轻粘土―重粘土,呈中性至碱性,主要分布于湘中、湘南一带,适宜生长的优势作物主要有柏、枣、烤烟、辣椒和柑橘。
4砂页岩红壤、灰黄壤、砂红壤
砂页岩红壤、灰黄壤、砂红壤的母质主要是赋存于中泥盆统跳马涧组、上泥盆统云麓宫组岳麓山组、云台观组、石炭系下统测水段的中粗粒碎屑岩、砂质页岩和炭质页岩等,矿质元素(可溶态)主要是含K量较高,其余的矿质元素均较为贫乏。该类型的土壤偏砂性,通透性好,保水保肥力弱,砂壤土,酸性。在湖南全省各地均有分布,适宜生长的优势作物主要有杉、竹、松和油茶。
5紫色碎屑岩、紫色土、紫砂土
紫色碎屑岩、紫色土、紫砂土的母质主要是赋存于三叠系中统巴东组和白垩系、第三系的紫色砂页岩、砾岩、砂岩,受其母岩的影响,矿质元素(可溶态)含Ca、Mg和Fe非常丰富,但是B、P、N的含有量贫乏,该类型的土壤通透性好,保水保肥力强,呈弱酸―碱性,主要分布于衡阳、醴―攸、茶―永、沅―麻等地,适宜生长的优势作物主要有柏、松、枣、烤烟和柑橘。
6第四系红土土壤
第四系红土土壤的母质主要是赋存于第四系更新世的网纹状红土,受其母岩的影响,矿质元素(可溶态)含Fe、Mn丰富,但是Ca、Mg的含有量较为贫乏,质地偏砂―粘重,土壤呈弱酸性。该类型的土壤遍布全省,适宜各种作物生长。
7冲积土,潮土
冲积土,潮土的母质主要是赋存于第四系更新世的砂、砂砾、砂质粘土、粉砂细质粘土、淤泥,矿质元素(可溶态)含Zn、Cu、Mn、Fe、P较丰富,B、Ca、Mg的含有量较为贫乏,该类型土壤通透性好,偏砂,中壤―轻壤土;土壤呈弱酸性―弱碱性,主要分布于洞庭湖平原和湘、资、沅、澧四水流域范围内,以湖南常德、益阳和岳阳市较为集中,其他的地市多沿河作片状或带状分布,生长的主要优势作物有油茶、茶叶、柑橘、柚和香芋。
8花岗岩麻砂土(红壤)
花岗岩麻砂土(红壤)主要是赋存于燕山期、加里东期和印支期的岩浆岩(酸性为主,中酸性次之,基性最少)里,矿质元素(可溶态)较为贫乏,土壤质地偏砂,保水保肥力差,砂壤土,酸性,主要分布以湘南、湘东地区为主,其次在湘中,湘西北较为少见,适宜生长的优势作物主要是松树,局部地方生长的有杉树。
酸性土壤的特点篇2
关键词:土壤肥力;土壤组成;土壤酸碱度
中图分类号:S158文献标识码:A
1土壤及土壤肥力
土壤是地球陆地上能够生长绿色植物的疏松表层。土壤能够生长植物是因为绿色植物生长发育必需的生活条件除日光外、水分、养分、空气和热量都是全部或部分通过土壤供给的,所以人们把土壤供给和协调植物生长发育所需要的水分、养分、空气和热量的能力,称为土壤肥力。土壤肥力是土壤的本质特征。土壤肥力因环境条件的改变而不断地发生变化。如果利用合理,土壤可以越种越肥,否则,土壤就会越种越瘦。因此,提高土壤肥力的关键是科学的管理和利用土壤。
2土壤的组成
2.1土壤质地
土壤矿物质以大小不等的土粒形式存在于土壤中。土粒分为石砾、砂粒、粉砂粒和黏粒4级。任何土壤都含有砂粒、粉砂粒和黏粒,但不同的土壤含有大小土粒数量比例不同。土壤中不同大小土粒的百分比称为土壤质地。根据土壤质地,可将土壤分为砂土、壤土、黏土3大类。砂土含砂粒多,黏粒少。土粒间孔隙大,透水性强、保水力弱,土壤水分容易缺乏,养分含量少,保肥力弱,土壤供肥力低,通气良好,有机质容易分解,昼夜温差大,早春土温容易回升,农民称砂土为暖性土。土质松散,易耕易种,不板结。因此,作物在砂土栽培时,种子容易发芽,出苗快、出苗齐,易发小苗,但中期容易脱肥,不发老苗;黏土与砂土恰好相反,含黏粒多,砂粒少,土粒间孔隙小,透水性差,保水力弱,遇水易内涝,矿质养分含量高、转化慢,土壤供肥持续时间长,土壤通气不良,有机质分解慢,早春土温不易回升,农民称凉性土。湿时泥泞,干时坚硬,宜耕期短。耕、种困难,不发小苗,发老苗;壤土具有砂土和黏土的优点,即具有良好通透性、保水保肥性,土性不冷不热,农民称温性土。土粒不散不黏,适于耕作,既发小苗也发老苗,是良好的质地类型。
2.2土壤有机质
土壤具有机质包括动植物残体、施入土壤的有机肥料和经过微生物作用形成的腐殖质。土壤有机质是土壤的重要组成部分,它不仅含有植物所需要的各种养分,而且对改良土壤也有重要作用。土壤有机质含量的多少,是衡量土壤肥沃程度的一项重要指标。土壤有机质在微生物作用下经常处在复杂的变化过程中。这种变化,概括起来有2种过程:在好气微生物作用下,将有机质分解成为可溶性无机养分,供作物吸收利用,这是有机质矿化过程;在嫌气微生物作用下,有机质转化过程中重新合成一种新的复杂有机物质―腐殖质,这是有机质的腐化过程。腐殖质是土壤有机质存在的主要形式,腐殖质能够改良土壤结构、保存养分,在一定条件下,腐殖质经过分解,又能变为可供植物利用的可溶性养分。矿质化过程是释放养分的过程,而腐殖化过程却是积累养分的过程,2种过程要求的环境条件不同。在温度高、氧气足、水分适宜的条件下,好气性微生物活跃,以矿化过程为主供应作物养料,但不利于养分的积累,易造成养分流失。
2.3土壤微生物
生活在土壤里的细菌、真菌、放线菌统称为土壤微生物。土壤微生物在土壤中具有非常重要的作用:它能把复杂的有机质分解成简单的无机养分,供植物吸收利用,同时还能把有机质转化为腐殖质,改良土壤。有些微生物能固定空气中的氮素,还有些微生物能把土壤中固体矿物质逐步分解为可溶性养分以供植物吸收利用。越是肥沃的土壤,其中微生物的数量越多。
3土壤酸碱度
土壤溶液中溶解的物质,有的产生氢离子,有的产生氢氧离子,当土壤溶液中氢离子数量多于氢氧离子数量时,土壤就显酸性;当氢氧离子数量多于氢离子数量时,土壤就显碱性。只有当土壤溶液中氢氧离子的数量和氢离子的数量相当时,土壤才呈中性。因此,土壤溶液中氢离子和氢氧离子的浓度大小称为土壤酸碱度。一般的土壤多是中性,只是略微偏酸、偏碱而已。而南方的红壤、黄壤是酸性土;北方的盐碱土是碱性土壤。不同的作物对土壤酸碱度的要求不同,有的喜酸而酸,有的比较抗碱,但大多数作物都不能在过酸过碱的土壤上生长。土壤酸碱度对土壤养分的有效性有很大的影响,过酸过碱的土壤易使磷固定,难被植物吸收,也使其他养分转化受到影响。所以,在施用化学肥料时,碱性肥料施在酸性土壤里效果最好。酸性肥料施在碱性土壤里最好。土壤微生物的活动也受酸碱度的影响,过酸过碱同样不宜于微生物活动。
酸性土壤的特点篇3
我国的化肥施用量增长速度快,呈现逐年递增的趋势。1985年全国化肥施用总量为1775.8万t,2002年达4339.5万t,比1985年增长1.4倍,年平均增长率为8%[2,3]。与此同时,单位面积化肥施用量也呈逐年递增趋势,2002年达到了333.7kg/hm2[2,3](图2),高于世界平均水平。施用化肥可提高土壤肥力,改善土壤性状,创造最佳的植物营养环境,从而提高农产品的质量。但是,化肥用量并非越大越好。一般来说,各种作物对化肥的平均利用率,氮为40%~50%,磷为10%~20%,钾为30%~40%[4]。通常,化肥施用量越高,流失到环境中的数量也就越大,对生态环境的污染程度也就越高。以氮肥为例,由于施用量较高,而利用率较低,损失严重。据对我国主要粮食作物氮肥去向的研究的数据,我国氮肥的利用率在9%~72%之间,平均为30%~41%[5]化肥每年的流失量占施用量的40%左右[6]。化肥的过量施用与地区经济的发展水平有密切关系。一般来说主要发生在经济相对发达地区,尤其是种植蔬菜等经济作物的田块上。此外,也与农业生产的发展,化肥品种的单一性、施肥的盲目性、施用技术的不合理等因素有关。
2化肥施用与土壤生态环境
2.1引起土壤酸化和板结,导致土壤肥力下降长期施用化肥对土壤的酸度有较大的影响。在江西红壤中,盆栽试验结果表明,在酸性红壤中施用硫酸钾、硫酸铵等,都会使红壤的酸度有不同程度的增大[7]。同时,硫酸钾在中性和石灰性土壤中生成硫酸钙,而在酸性土壤上生成硫酸,因此在中性和石灰性土壤上长期大量施用硫酸钾,土壤中钙会逐渐减少,而使土壤板结。土壤酸化和土壤板结使耕地土壤退化,生产力降低,并可活化有害重金属元素如铝、锰、镉、汞、铅、铬等,增加它们在土壤中的活性,或导致有毒物质的释放,使之毒性增强,进一步对土壤生物造成危害。土壤酸化还能溶解土壤中的一些营养物质如钾、钙、镁等,在降雨和灌溉的作用下,向下渗漏补给地下水,使得营养成分流失,造成土壤贫瘠化,影响作物生长。大量的施用化肥,用地不养地,造成土壤肥力的普遍下降。据调查,由于长年施用化肥,华北平原土壤有机质已降到1%左右,全氮含量不到0.1%,在东北三江平原,多年重用轻养,使土壤有机质的含量从10%~11.5%下降到3%~5%[8]。从第二次全国土地普查的1403个县的汇总来看,土壤有机质低于0.6%的农田占10.6%;农田总面积的52.6%缺磷,23%缺钾,14%磷钾俱缺。由于大量使用以氮肥为主的化肥,导致很多土壤中磷或钾成为限制肥力的主要因子;缺硼、钼、锰、锌和铜的农田分别为25.6%、34.8%、15.8%、38.0%和5.2%[9]。
2.2化肥中的有害物质对土壤的污染制造化肥的矿物原料及化工原料中,含有多种重金属放射性物质和其它有害成分,它们随施肥进入农田土壤造成重金属污染。磷肥的施用,不可避免地带给土壤许多有害物质:镉、锶、氟、镭、钍等。施用磷肥过多,会使施肥土壤含镉量比一般土壤高数十倍、甚至上百倍,长期积累将造成土壤镉污染[10,11~13]。由于镉在土壤中移动性很小,不易淋失,也不为微生物所分解,被作物吸收后很易通过饮食进入并积累于人体,是某些地区骨通病、骨质疏松等重要病因之一。但是据鲁如坤等测定[14],我国磷矿镉含量范围在0.1~571mg/kg,但大部分在0.2~2.5mg/kg,比世界主要国家磷矿都低。目前随磷肥进入土壤中的镉含量最多为0.59g/hm2,远远低于我国最低绝对环境容量(0.73kg/hm2)[15]。可以认为,国产磷肥长期施用时所带入土壤的镉量不至于造成环境问题。但是,我国还进口一些国外磷矿,这些磷矿一般含镉量远远高于我国磷矿。对于这些磷矿生产的磷肥,应对其含镉量加以监测,以确保我国土壤不受污染。有些化肥中还含有机污染物,以致生产出含酚量较高、具有异味的农产品。另外,大量施用石灰氮(氰化钙)可产生双氰胺、氰酸等有害物质,抑制土壤硝化作用,引起土壤污染,严重威胁着粮食生产。三氯乙醚的污染是一个比较典型的事例[16],它是由于施用含三氯乙醚的废硫酸生产的普通过磷酸钙肥料所引起的。其中666.7hm2以上的污染事故在山东、河南、河北、辽宁、苏北、皖北等地曾多次发生,受害品种包括小麦、花生、玉米等10多种农作物,轻则减产,重则绝收。有的田块毁苗后重新播种多次仍然受害,损失很大。
2.3造成土壤硝酸盐(NO3-)污染和土壤次生盐渍化频繁施用氮肥能直接影响土壤中NO3--N的含量水平。在过量施用氮肥和大量灌溉的情况下,肥料氮主要以硝酸态形式从土壤中淋溶损失。有试验结果表明,土壤中的硝态氮含量随施肥量的增加而增加[17~19]。古巧珍等通过大田长期定位施肥试验研究了土壤剖面硝态氮分布与累积,表明长期单施化学氮肥或氮钾、氮磷、氮磷钾肥使土壤NO3--N大量积累,从而随土壤水分,通过土壤-植物系统而部分淋失[17]。与大田作物相比,蔬菜保护地施肥量大且施肥次数频繁。由于温室大棚内土壤水分蒸发快,土壤返盐现象比较严重[20]。因此大量施用化肥,容易使保护地NO3-离子大量剩余与迅速累积,加速了土壤盐积和次生盐渍化[21]。崔正忠等对黑龙江省四个中心城市蔬菜保护地土壤养分变化趋势进行了研究,分析结果表明,过量施用无机肥料,致使一些保护地土壤速效氮、磷、钾含量过高,部分土壤含盐量高达0.567%,出现盐渍化现象[22]。另外,由于农民缺乏必要的技术指导,对N、P、K及微量元素肥料使用缺乏科学知识,只注重施用见效快的氮肥,导致养分供应失衡,影响作物正常吸收利用,势必引起土壤盐分的过剩而累积。设施栽培条件下,次生盐渍化通常是造成连作障碍的重要因素之一,盐分的过分积累会造成作物生理性干旱,甚至生理毒性物质的形成[23]。
3化肥施用与水环境
3.1为水体富营养化提供氮、磷等营养源
农业生产中大量施用化肥,使氮、磷等营养元素大量进入水体,引起水体富营养化,造成化肥对地表水的非点源污染。据估计,沉入河、湖的氮素约有60%来自化肥[1]。美国环保部门一项研究报告也同样估计,每年流入河流中的氮和磷量有29.1%~67.5%的N,25.0%~45.9%的P来自农田径流,并随着施肥量的增加而增加,农田是水体富营养化的主要营养源,施肥对地表水和地下水中氮、磷含量的增加有重要影响[24]。吕耀等报道:太湖流域等农业集约化较高的地区出现了施肥过量以及肥料结构不合理的现象,造成大量氮通过地表径流进入太湖,从而加剧了太湖水体富营养化[25]。张兴昌等则发现径流流失的无机氮主要以硝态氮为主[26]。
3.2氮素淋溶污染地下水
农业上长期大量施用化肥是造成地下水硝酸盐污染的重要原因。长期使用氮肥的地区,地下水含氮量在逐年增高。氮肥进入土壤后,经硝化作用产生NO3-,除了被作物吸收利用外,其余的NO3-不能被负电的土壤胶体吸附,因而随降雨下渗而污染地下水[8]。朱建华等认为施用氮肥不仅增加了土壤表层硝酸盐含量,同时也容易造成大量的硝酸盐被淋洗到深层土壤,形成对地下水的潜在威胁[27]。据调查,京、津、唐地区69个观测点的地下水,半数以上硝态氮含量超标,高者达67.7mg/kg[28]。有资料表明,北京市郊菜田因施用氮肥过多,地下水硝态氮含量为61.6~124.0mg/kg[29]。农田施用氮肥对地下水的污染很普遍[30]。在大量施用氮肥地区,食用水中硝态氮含量经常超过最大允许量[31]。
4化肥过量施用对作物品质及食物链的影响
过量施用化肥,不但造成肥料养分的浪费,而且对植物体内有机化合物的代谢产生不利影响。在这种情况下,植物体内可能积累过量的硝酸盐、亚硝酸盐。过量的硝酸盐和亚硝酸盐在植物体内的积累一般不会使植物受害,但是这两种化合物对动物和人的机体都是有很大毒性的,特别是亚硝酸盐,其毒性要比硝酸盐高10倍[32]。植物性产品中高含量的硝酸盐会使其产品品质明显降低。硝酸盐以过多的有毒的数量被作物大量吸收,成为作物产品的污染源。对同一种作物,氮肥施用愈多,土壤中的NO3--N含量也愈高,则作物体内的NO3--N含量也将随之提高[33~36],进而经由食物或饲料,影响进入人体或畜禽体内的NO3--N含量。尽管NO3-本身毒性不大,但它在人体肠胃中经硝酸还原细菌的作用会转化成NO2-,从而可能引起人体血液缺氧中毒反应,导致患有高铁血红蛋白血症,甚至引起窒息和死亡[32]。蔬菜是一种容易富集和残留硝酸盐污染的作物。人体摄入的硝酸盐有81.2%是来自蔬菜[37],而施入土壤中的各种N肥又是蔬菜累积硝态氮的主要来源[38]。孙权等对宁夏灌於旱耕人为土氮肥(N)与大白菜产量及菜体和土体中硝酸盐累积的关系进行了田间试验研究[39],结果表明,在设计范围内,施用N明显增加土体各土层中的硝态N含量,内叶硝酸盐含量随施N肥量的增加而增加,外叶硝酸盐含量在高施N时,随生育期延长而增加。陈新平等调查表明,北京市郊菜地施氮量高达每季781.5kg/hm2,过量的氮肥施用造成蔬菜(特别是叶菜类蔬菜)硝酸盐含量过高,在每公顷施氮量225~675kg的范围内,小白菜地上部分硝酸盐含量达3993~4504mg/kg[40]。
养分投入不平衡已成为制约蔬菜产量和品质提高的重要因素,超高量的化肥施用存在着巨大的环境风险。氮营养过剩一方面会导致蔬菜叶面积过大,结实不良,易感病虫害,对不良气候环境的抗逆性变弱;另一方面,氮过量会造成土壤中亚硝酸、氨气等气体挥发而引起作物地上部分直接受害,造成气体障碍[41]。磷过量,菜地土壤较其他土壤有效磷含量要高出十倍至数十倍,高磷土壤蔬菜生育期明显延长,并由于作物对N、P的过量吸收,而引起其他营养元素的缺乏、营养失调等生理病害,严重影响蔬菜的产量和品质,如形成番茄脐腐病、空果、条腐果,青椒小果,黄瓜苦味,莴苣的叶烧病以及甜瓜、芹菜的心腐病等[42]。马朝红等依据蔬菜生长需肥特性和养分平衡原理[7],结合随机抽样调查数据分析,结果表明,武汉市市郊东西湖区蔬菜养分投入量远高于蔬菜生长需肥量,导致氮、磷在土壤中的大量积累,其中以磷最为突出,每季蔬菜磷的积累量达到220~380kg/hm2,氮积累量为80~210kg/hm2,必然会对产品品质和产量带来负面影响,增加农业环境风险。胡承孝等以潮土、黄棕壤为供试土壤,选取小白菜、番茄分别为叶菜类、果菜类代表,在土培条件下研究了氮肥水平对蔬菜品质的影响,分析表明,随着氮素水平的提高,蔬菜营养品质下降,蔬菜体内维生素C、可溶性糖含量下降,氨基酸总量及谷氨酸,脯氨酸等氨基酸含量,非蛋白氮与总氮比值升高,可滴定酸度呈直线增加,N含量逐渐增加,而P、K含量逐渐减少,硝酸盐污染加剧[43]。
5化肥施用与大气环境
化肥对大气环境的影响主要集中在氮肥上,氨挥发及NOx的释放等会使大气中氮含量增加而带来一系列的影响。硝化及反硝化释放N2O到大气中造成温室效应,氮肥的使用对其它温室气体CH4及CO2的释放也有影响。而且CH4、CO2等气体在大气中的含量增加,不仅能引起温室效应,而且还能够引起臭氧层的破坏。
5.1氨挥发
氨态氮肥是化学氮肥的主体,施入土壤的氨态氮肥很容易以NH3的形式挥发逸入大气。农业生态系统中NH3的释放量每年为107t,主要来自于NH4+-N肥和动物排泄物中NH3的挥发。据王文兴等[44]估计,我国1991年全国人为源氨的排放量为8.91×106t,其中氮肥施用的排氨量占氮肥使用量的18%。据朱兆良[45]估计,我国农田氮素的主要损失途径为氨挥发、反硝化和淋失及径流损失。综合有关资料看出,稻田中氮的损失主要是反硝化和氨挥发,分别占氮肥施用量的16%~41%和9%~40%[46]。旱地,特别是石灰性土壤上撒施尿素、碳酸氢铵的NH3挥发损失很大,一般为所施N量的10%~25%[47,48]。在石灰性水稻田,由于灌溉稻田表面水层的pH高达7~8,撒施或分次施用尿素(或碳酸氢铵)的NH3挥发量很大,有时高达所施N量的40%~50%[49]。硝酸盐淋失和氮素径流损失主要发生在降水量和强度较大的地区和季节,约占氮肥施用量的0.23%~30%[23]。由此可见,我国农田氨挥发的氮素损失量可能占肥料氮肥施用量的10%以上。氨是一种刺激性气体,对眼、喉、上呼吸道刺激性很强。高含量的氨还可熏伤作物,并引起人畜中毒事故。大气氨含量的增加,可增加经由降雨等形式进入陆地水体的氨量,是造成水体富营养化的一个因素。
5.2N2O和NOX的排放
随着化肥的大量施用,大气中氮氧化物含量不断增加。化肥施入土壤,有相当一部分以有机或无机氮形态的硝酸盐进入土壤,在土壤反硝化微生物作用下,会使难溶态、吸附态和水溶态的氮化合物还原成亚硝酸盐,同时转化生成氮和氮氧化物进入大气,使空气质量恶化。1992年IPPC工作报告指出,由于人类活动加强,大气中N2O的含量正急剧增加,由农业系统中无机和有机氮肥的施用及生物固氮作用产生的N2O量约占年排放量的60%[50]。根据Veldkamp和Keller[51]估计,大约有所施N肥的0.5%是以NOx的形式损失。
5.3CH4和CO2的排放
化肥深施能明显降低稻田CH4的释放。如尿素的深施对降低甲烷排放速度效果最好,而施在土壤表面则能增加甲烷排放。硫酸铵也是如此,虽然表施和深施都能降低CH4排放量,但施在稻田表面对降低甲烷排放程度却比施在土壤深层低得多,大致低5~10倍[52]。施肥量对稻田CH4的排放,尤其对化肥施用量的影响,研究结果相差很大,难以定论。如Cicernoe等发现施硫酸铵的稻田甲烷排放是不施肥田的5倍;Schiitz则发现施用硫酸铵总体上降低了甲烷的排放,而有些试验则认为,施肥量对甲烷特征影响不大,或没有明显规律[53]。在江苏句容稻田试验中,施氮量为100kg/hm2和200kg/hm2的处理甲烷排放量高于不施氮肥处理,但施氮量最高300kg/hm2的处理却低于对照处理[54],所以化肥用量对稻田甲烷排放的影响仍有待进一步研究。随着农业集约化程度的提高,化肥的大量使用将会促进农田CO2的排放,如尿素地CO2通量大于不施尿素地CO2排放通量值,在整个观察期,两种田CO2平均排放量分别是262mg/(m2•h)和177mg/(m2•h)[55]。
6防治对策
随着肥料施用量的不断增加,化肥对农业生态环境的消极影响日益明显,促使人们开始反思大量施用化肥可能带来的某些问题及副作用。在国际上,掀起了以低投入、重有机,将化肥使用保持较低的水平,保障食品安全和环境安全为中心的持续农业运动,提倡推广以尽量低的化肥投入,尽量小的对环境的破坏与化肥在农业生产中的高效增产作用相结合为主要目的的“施肥制度”。若单纯地靠拒绝使用化肥来控制其污染影响是不现实的。最重要的是增加科技教育的投入,提高农民的科学素质,提高全民的环境意识,才可以有效地做到合理施肥。这与国家的政策调控也有关,核心的问题是怎样在粮食产量与环境保护、作物产量与品质之间找到平衡点,对我们国家来说,温饱问题还是非常重要的。无粮不稳,一方面要保证产量,另一方面则要保护环境。农业和土壤科学的研究要与生产实践紧密结合,做到从实践中来,再回到实践中去。研究不同土壤在不同耕作制度下的合理施肥技术,并通过地方政府定期向农民。针对当地土壤生态条件的特点,制定相应对策,科学合理地使用化肥,充分有效地发挥其肥效,尽量减轻和避免对环境的不良影响。根据我国目前土壤肥力状况和肥料资源的特点,提出以下对策。
6.1确定化肥的最适施用量
施肥量特别是氮肥,不应当超过土壤和作物的需要量。不同的土壤和相同土壤的不同地块,在养分含量上往往存在着很大的差异。而且不同作物和同一作物的不同品种,各有其不同的生育特点,它们在其生长发育过程中所需要的养分种类、数量和比例也都不一样。因此,在拟定施肥建议时必须严格按照作物的营养特性、预期产量和土壤的农化分析结果,来确定化肥的最适施用量。即要了解土壤肥力,这样才能做到合理施肥,减少淋失对生态环境的不良影响。但是由于预测土壤的供氮量比较困难,一般用“以土定产,因产定氮”法。太湖地区的水稻和小麦的田间试验统计结果证明了这一方法的可行性[45],因此可据此并结合已有的经验确定大面积上氮肥的施用量。
6.2化肥与有机肥结合施用
实现作物养分综合管理,有机和无机相结合,是提高作物生产力和氮肥利用率的重要措施之一。有机肥是营养比较齐全的肥料而且含有丰富的有机物,对改善土壤的物理性状,提高土壤养分含量具有重要作用。据西北农业大学在米脂县的调查[49],小麦连作多年的坡耕地,土壤有机质和全氮含量下降。而经过苜蓿倒茬的坡耕地,土壤有机质和全氮含量分别增加0.18%和0.02%(绝对值)。有机肥是供给微生物能量的主要来源,而化肥却能供给微生物生长发育所需的无机养料。因此,二者配合使用就能增加微生物的活性,促进有机物的分解,增加土壤中的速效养分,以满足作物生长的需求。有机-无机肥料结合施用符合我国肥源的国情,也是培肥土壤、建立高产、稳产农田的重要途径。
6.3氮、磷、钾等肥料配合施用
目前,我国氮、磷、钾比例及土壤养分状况与作物对养分的吸收状况不相协调。关键是必须从宏观上调整肥料结构,在配合施肥的基础上,采取“适氮、增磷、补钾”的施肥技术,使植物的矿质营养处于最佳状态。在目标施氮量中扣除一定比例的氮肥(如10%~20%[32]),视需要进行补施,这样可避免氮素过多的危害和流失。在当前钾肥亏缺较大的情况下,应当充分利用农家肥中的钾,以缓解钾素供应不足的矛盾,将有限的钾肥资源用在严重缺钾的土壤和需钾量高的作物上。同时,应重视发展我国高含量复合肥料,并以增加高含量磷肥和氮磷复混肥为主攻方向,这样既起到调整氮磷比例,又能起到逐步改变我国化肥品种结构以单一、低含量为主的现状。
酸性土壤的特点篇4
关键词:含硅、钙土壤调酸剂;酸性水稻土;水稻产量
中图分类号:S156.2文献标识码:B文章编号:0439-8114(2017)06-1045-03
DOI:10.14088/ki.issn0439-8114.2017.06.013
Abstract:Inthetwoquarter,theacidricesoilphysicalandchemicalpropertiesandriceyieldinHubeiprovinceofriceproducingareaswereevaluatedbyusingsiliconandcalciumsoilconditioner.TheresultsshowedthattheapplicationofdifferentamountofcontainingsiliconcalciumimprovedthesoilpHupto0.29,increasedthesoilsiliconaluminumratioupto0.23,hadacertaineffectofthesoilcationexchangecapacityandtheincreaseupto1.90cmol(+)/kg,increasedthericeseedsettingrateupto5.56%,increasedthegrainweightupto0.73g,hadlittereffectofthebulkdensityofsoilandthesoilorganicmatter,totalnitrogen,availablenitrogenandavailablephosphorusetc.Theresultsindicatedthatinheavyacidicsoilapplicationofsilicon,calciumsoilconditionercouldimprovethesoilacidity,Si/Alratioandimprovethecationexchangecapacity,whichhavelitterobviouseffecttothesoilstructureandothernutrientcontent,contrarytoriceyield.
Keywords:siliconandcalciumsoilconditioner;acidricesoil;riceyield
硅是水稻生命活动中大量需要和吸收的重要元素,对水稻产量的形成有很大的影响[1]。硅能改善水稻的形态结构,提高产量和品质,同时能提高水稻抗性,包括增强水稻的抗倒性、抗病虫害能力和抗逆境能力,还可以提高氮、磷利用率,减轻一些重金属的毒害作用[2]。
湖北省50%以上的水稻土分布在中部广袤沃野的低丘平原,是湖北省的鱼米之乡[3],近年来,随着水稻产量和化肥施用量的逐年提高,种植水稻的土壤酸化趋势日益严重。湖北恩施州耕地土壤pH≤5.0的过酸性耕地占总面积的20.53%,超过50%的土壤呈酸性或强酸性[4];黄冈市现有耕地中,由于多年的演变,部分耕地土壤由碱性转为中性,中性土壤转为酸性,还有的由一般酸性转变为强酸性[5]。耕地土壤酸化后主要影响土壤养分的有效性,破坏土壤结构,耕性变差,导致作物减产,农产品品质下降[6]。
含硅、钙土壤调酸剂是一种适用于酸性土壤水稻种植的土壤调理改良剂,为了验证其应用于酸性土壤改良及对水稻的增产效果,于2015年5~11月进行了相关产品应用于水稻土的田间试验,现将试验结果报告如下。
1材料与方法
1.1试验点基本情况
试验点设置在武穴市大金镇周干村,北纬29°59′,东经115°37′,地势平整,雨水充沛,排灌方便。于2015年4月(试验前)到试验点取土,土壤基本理化性状见表1。
1.2材料
1.2.1供试作物早稻为鄂早18,晚稻为湘优69。
1.2.2供试肥料及土壤改良剂早稻:基肥每公顷施30%(15-7-8)配方肥600kg,分蘖肥每公顷施46%尿素150kg,穗肥每公顷施46%尿素75kg和60%钾肥150kg。
晚稻:基肥每公顷施45%(19-13-13)配方肥600kg,分蘖肥每公顷施46%尿素75kg,穗肥每公顷施46%尿素75kg和60%钾肥75kg。
土壤调酸剂所含主要成分含量为CaO≥32%、SiO2≥16%、K2O≥5%。
1.3试验设计
试验连续进行两季,4月20日早稻育苗,5月13日小区,沟宽0.6m,埂宽0.4m,并取基础土壤,16日施基肥并移栽,株距0.2m,行距0.17m,5月22日施分蘖肥,6月23日施穗肥。
7月5日晚稻育苗,7月22日每小区取3点土样和6兜植株样,7月24日收割早稻,8月1日晚稻施基肥并移栽,株距0.2m,行距0.18m,8月7日施分蘖肥,9月9日施穗肥,10月29日每小区取3点土样和6兜植株样,11月1日收割晚稻。
设4个处理:处理1(CK),常规施肥;处理2,常规施肥+等养分含量肥料(折合K2O含量为75kg/hm2);处理3,常规施肥+土壤调酸剂1500kg/hm2;处理4,常规施肥+土壤调酸剂1800kg/hm2;以上各处理化肥施用量、施用方法及农艺措施相同。
小区面积40m2,长8m、宽5m,小区间筑田埂并用薄膜覆盖相隔,试验设4次重复,随机区组排列。试验前、后分小区取0~20cm土壤样品,测定土壤pH、阳离子交换量等。
2结果与分析
2.1土壤调酸剂的改土效果
2.1.1土壤调酸剂对土壤pH的影响土壤调酸剂调节土壤pH的效果见表2。由表2可知,第一季水稻收获时,处理1对照(常规施肥)pH为4.93,增施等养分含量肥料处理为4.89,降低了0.04;增施土壤调酸剂1500、1800kg/hm2处理pH分别为5.14、5.17,与对照相比,增施土壤调酸剂1500、1800kg/hm2处理pH分别提高了0.21、0.24;第二季水稻收获时,4个处理pH分别为4.90、4.89、5.18、5.19,增施等养分含量肥料处理比对照降低0.01,增施土壤调酸剂1500、1800kg/hm2处理与对照相比,pH分别提高了0.28、0.29,表明增施土壤调酸剂能够提高土壤pH。
2.1.2土壤调酸剂对土壤有机质和有效养分的影响由表3可知,早稻收获时对照(常规施肥)有机质含量为20.2g/kg,增施等养分含量肥料处理与对照相比差异不明显;增施土壤调酸剂1500、1800kg/hm2处理有机质含量分别为20.3、20.5g/kg,与对照相比差异不明显;4个处理的全氮、有效磷含量差异也不明显;4个处理速效钾含量差异比较明显,其中增施等养分含量肥料处理比对照增加5.3mg/kg,增施土壤调酸剂1500、1800kg/hm2处理分别增加1.8、2.3mg/kg;4个处理硅铝率差异明显,其中对照为2.25,与对照相比,增施等养分含量肥料处理降低了0.01,增施土壤调酸剂1500、1800kg/hm2处理分别提高0.05、0.09;4个处理阳离子交换量差异比较明显,增施等养分含量肥料处理为16.00cmol(+)/kg,比对照降低0.33cmol(+)/kg,增施土壤调酸剂1500、1800kg/hm2处理与对照相比分别增加1.90、1.77cmol(+)/kg;增施土壤调酸剂1500、1800kg/hm2处理与对照、增施等养分含量肥料处理相比,土壤容重减少,但差异不明显。
晚稻收获时,增施等养分含量肥料、土壤调酸剂1500、1800kg/hm2处理有机质含量分别为21.5、21.2、21.5g/kg,与对照相比(21.3g/kg)差异不明显;4个处理的全氮含量差异也不明显;增施等养分含量肥料处理有效磷含量比对照增加1.5mg/kg,而对照、增施土壤调酸剂1500、1800kg/hm2处理之间差异不明显;4个处理间速效钾差异明显,与对照相比,其中增施等养分含量肥料处理增加5.6mg/kg,增施土壤调酸剂1500、1800kg/hm2处理均增加1.9mg/kg,增幅为2.13%;4个处理间硅铝率差异明显,其中对照为2.23,与对照相比,增施等养分含量肥料处理降低0.03,增施土壤调酸剂1500、1800kg/hm2处理分别提高0.22、0.23;4个处理阳离子交换量差异比较明显,与对照相比,增施等养分含量肥料处理增加0.18cmol(+)/kg,增施土壤调酸剂1500、1800kg/hm2处理分别增加1.10、1.64cmol(+)/kg,增幅分别为6.88%、10.25%;4个处理间的土壤容重差异不明显。
2.2土壤调酸剂对水稻生长发育及产量的影响
2.2.1土壤调酸剂对水稻生长发育的影响早稻:与对照(常规施肥)相比,每公顷增施1800kg调酸剂处理结实率提高了5.56个百分点,千粒重增加0.73g,每穗粒数多10.15粒;每公顷增施1500kg处理结实率提高了3.18个百分点,千粒重增加0.67g,每穗粒数多5.55粒(表4)。
晚稻:与对照(常规施肥)相比,每公顷增施1800kg调酸剂处理结实率提高了2.79个百分点,千粒重增加0.40g,每穗粒数多8.70粒;每公顷增施1500kg调酸剂处理结实率高2.03个百分点,千粒重增加0.35g,每穗粒数多7.50粒(表4)。
2.2.2土壤调酸剂对水稻产量的影响水稻使用土壤调酸剂,与对照(常规施肥)相比,每公顷增施1800kg调酸剂处理早稻增产幅度为6.18%,晚稻增产幅度为6.95%;每公顷增施1500kg调酸剂处理早稻增产幅度为5.10%,晚稻增产幅度为6.44%(表4)。
3小结与讨论
1)土壤调酸剂应用于pH在5.0左右的水稻土,对土壤pH有一定的影响,可以明显提高土壤pH、硅铝率和阳离子交换量,以每公顷增施1800kg调酸剂处理效果最佳;增施土壤调酸剂处理的全氮、碱解氮、有效磷含量差异均不明显,说明施用土壤调酸剂对土壤养分含量影响不大;4个处理的土壤容重有差异但是差异不大,表明土壤调酸剂可以改良土壤结构但是影响有限。
2)在对水稻产量影响方面,增施土壤调酸剂处理的水稻株高高于对照,产量相对空白对照表现为增产,且增产幅度与土壤调酸剂增施量呈正相关,以每公顷增施1800kg{酸剂处理的增产幅度最大,达6.95%,说明土壤调酸剂通过对土壤酸根离子的中和作用,缓解了土壤严重酸化趋势,从而有利于水稻生长,促进水稻分蘖、抽穗,为后期增产打下基础。
3)两季水稻收割后,增施等养分含量肥料处理的土壤pH与对照相比,均表现为降低,阳离子交换量早稻表现为降低,而晚稻表现为增加,对其他土壤理化指标影响不明显;对水稻产量影响也不明显。结果表明,由于本试验田块酸性偏重,在施肥量达到一定程度(当地常规施肥方式)后继续加大施肥量,对水稻增产无效,反而会进一步加重土壤酸化,对土壤结构也有影响。
4)在酸性较重土壤(pH在5.0左右)中施用土壤调酸剂可以提高土壤pH、硅铝率和阳离子交换量,对土壤结构和其他养分含量影响不明显,对水稻增产效果明显。应用中可以根据土壤酸化程度,合理调整土壤调酸剂用量。
5)随着土壤酸化程度的提高,水稻土特别是冷浸田中重金属含量超标风险很大。土壤pH与土壤有效态铬含量之间呈负相关[7];外源硅施入土壤后,可以使土壤中的交换性镉的量下降,从而抑制植物对镉的吸收,缓解镉对植物的毒害作用[8]。在镉污染土壤上选用适宜的中微量和有益元素,能有效降低水稻对镉的吸收和稻米中的镉含量[9]。含硅、钙调酸剂对水稻土中重金属镉具有一定的钝化作用,但是钝化效果还有待进一步试验验证。
参考文献:
[1]郑爱珍,任雪平.硅在水稻生理中的作用[J].农业与技术,2004,24(1):50-52.
[2]杨利,马朝红,范先鹏,等.硅对水稻生长发育的影响[J].湖北农业科学,2009,48(4):990-992.
[3]湖北省农业厅土壤肥料工作站,湖北省土壤普查k公室.湖北土壤[M].武汉:湖北科学技术出版社,2015.
[4]周富忠.恩施州耕地土壤酸化的成因与对策[J].中国农技推广,2011,27(12):42-44.
[5]张继国,熊道龙,胡政权,等.黄冈市耕地地力评价与利用[M].北京:中国农业科学技术出版社,2014.
[6]向永生.恩施州耕地资源评价与利用[M].北京:中国农业科学技术出版社,2014.
[7]杨林,陈志明,刘元鹏,等.石灰、活性炭对铬污染土壤的修复效果研究[J].土壤学报,2012,49(3):518-525.
酸性土壤的特点篇5
1.1样品采集与分析项目
2011—2013年水稻冬闲期,在福建尤溪、顺昌、浦城、建瓯、上杭、闽侯(2样点)、建宁(2样点)、闽清、漳平、武夷山、宁化、建阳、延平、永安和泰宁15县(市)选择17对典型冷浸田与同一微地貌单元内的非冷浸田表层土壤(0~20cm)进行采样(表1)。采集的土壤分别代表福建省常见的氧化型黄泥田(剖面构型A-Ap-P-C)、还原型冷浸田(剖面构型Ag-G)、以及氧化还原型灰泥田、青底灰泥田、灰黄泥田或灰砂泥田类型(剖面构型A-Ap-P-W-G/C)。本研究土壤样品测定的指标共有41项,其中,生化指标12项(脲酶、转化酶、过氧化氢酶、磷酸酶、硝酸还原酶、微生物生物量C、微生物生物量N、微生物生物量C/总C、微生物生物量N/总N、真菌、细菌、放线菌),化学指标25项(pH、有机质、碱解N、速效K、全N、全K、缓效K、有效B、有效S、交换性Ca、交换性Mg、有效Mn、有效Cu、NO3--N、还原性物质总量、活性还原性物质、Fe2+、Mn2+、C/N、全P、阳离子交换量(CEC)、速效P、有效Fe、有效Zn、C/P),物理指标4项(粘粒、土壤水分、浸水容重、物理性砂粒)。累计理化、生化属性数据计1394个。土壤微生物生物量C、微生物生物量N测定参照鲁如坤[9]方法。即微生物生物量C用氯仿熏蒸-K2SO4浸提法,浸提液用日本岛津Shimadzu500有机C分析仪测定,薰蒸杀死的微生物中的C,被K2SO4所浸提的比例取0.38;土壤微生物生物量N测定样品前处理同土壤微生物生物量C方法,浸提后的水溶液用Shimadzu500测定,薰蒸杀死的微生物中的N,被K2SO4所提取的比例取0.45。土壤脲酶活性、过氧化氢酶活性、转化酶活性、磷酸酶、硝酸还原酶活性依次用靛酚蓝比色法、高锰酸钾滴定法、硫代硫酸钠滴定法、磷酸苯二钠比色法与酚二磺酸比色法测定;土壤微生物区系采用稀释平板计数法。土壤有效Zn、Cu、Fe、Mn采用DTPA混合溶液浸提-原子吸收分光光度计法;还原性物质总量与活性还原性物质采用硫酸铝溶液浸提,分别用重铬酸钾溶液氧化与高锰酸钾溶液氧化测定。
1.2数据处理
数据经Excel整理后,17对冷浸田与非冷浸田土壤的41项理化、生化属性利用DPS统计软件进行配对t检验分析,在17对样品41项理化、生化属性中,选择差异显著的因子属性数据库用于构建冷浸田土壤质量评价因子的MDS,MDS确定利用SPSS13.0统计软件的因子分析进行主成分分析,再利用DPS软件进行相关分析(α=0.05)。
2结果与分析
2.1福建冷浸田土壤主要理化、生化特征
冷浸田与同一微地貌单元内非冷浸田之间的41项属性因子中,有28项的t检验达到显著差异水平。从生化特征来看,转化酶、过氧化氢酶、磷酸酶、硝酸还原酶、细菌、真菌和放线菌、微生物生物量C和N、微生物生物量C/总C、微生物生物量N/总N等11项因子差异明显。其中,冷浸田土壤的过氧化氢酶、转化酶活性分别比非冷浸田高58.3%和22.1%,差异达到显著水平,这可能是由于冷浸田长期处于淹水厌氧环境,生物代谢过程产生了有害性的过氧化氢累积,致使过氧化氢酶作用基质含量高,一定程度上激活了过氧化氢酶活性;另外,由于处于厌氧状态下的土壤有机质难以矿化,有机质累积进一步诱导了冷浸田的微生物分泌较多的转化酶,以促进有机化合物的矿化。而冷浸田土壤的磷酸酶、硝酸还原酶活性、细菌、真菌、放线菌数量、微生物生物量C和N、微生物生物量C/总C、微生物生物量N/总N指标显著低于非冷浸田,其中,磷酸酶与硝酸还原酶分别仅相当于非冷浸田的52.2%和33.4%,这可能是由于冷浸田土壤中的磷素和NO3--N含量低,因而供给微生物转化的底物也少,降低了磷酸酶和硝酸还原酶活性。冷浸田土壤中细菌、真菌和放线菌数量分别仅相当于非冷浸田的70.2%、62.5%和54.0%,可能原因是冷浸田普遍处于低温还原状态,不利于土壤微生物活动,微生物区系与微生物生物量C、N也随之降低。从表2可以看出,微生物生物量C和N、微生物生物量C/总C、微生物生物量N/总N分别仅相当于非冷浸田的37.8%、56.3%、27.8%和44.7%,这主要是由于微生物生物量C是活性有机质的主要组分,尽管土壤微生物生物量仅占有机碳的1%~3%,但它在有机质动态中起着很重要的作用,其含量显著低于非冷浸田,反映出冷浸田土壤有机质“品质”较差的特性。
2.2冷浸田土壤质量评价因子最小数据集的构建
2.2.1冷浸田土壤质量评价因子主成分分析
冷浸田与非冷浸田之间土壤属性达到显著性差异的有28项,为了抓住这些关键因子,以达到快速治理与改善土壤理化、生化性状的目的,本文采用主成分分析对这些因素进行因子分析,以减少参评土壤因子,同时也解决数据冗余的问题。首先,选择特征值≥1的主成分(PC),特征值≥1的PC有5个,前5个PC累计贡献率78.5%(表5),说明这5个PC已基本上反映了冷浸田土壤性状变化的主要影响因素。对各变量在各个PC上的旋转因子载荷大小进行选取,一般认为系数绝对值在0.8以上的初始因子对构成的评价因子具有重要的影响力。其中,第1PC主要由C/N、细菌、放线菌初始因子构成,主要反映土壤生化特征;第2PC主要由微生物生物量N、微生物生物量N/总N初始因子构成,主要反映土壤活性有机N特征(属生化范畴);第3PC主要由还原性物质总量、活性还原性物质总量初始因子构成,主要反映土壤还原特征;第4PC主要由全N、物理性砂粒初始因子构成,主要反映土壤物理特征与化学养分特征;第5PC主要由全P初始因子构成,主要反映土壤化学养分特征。综上所述,由C/N、细菌、放线菌、微生物生物量N、微生物生物量N/总N、还原性物质总量、活性还原性物质总量、全N、物理性砂粒、全P10项候选因子组成的评价因子体系可以基本反映出28项初始评价因子构成的土壤质量信息。
2.2.2冷浸田土壤质量评价因子最小数据集的确定
对10项候选因子进一步进行相关分析表明,土壤不同因子间存在显著的相关性。根据土壤质量评价因子相对独立性原则,依据专家经验法对上述10项因子进行优化。C/N生态化学计量特征反映土壤C、N物质循环以及生态系统的主要过程,对土壤质量起着重要作用,其自然进入MDS;土壤细菌与放线菌均为微生物区系,二者与C/N均呈显著相关,但细菌与C/N相关系数较小,信息独立性较放线菌大,且在土壤养分转化过程中发挥着极其重要的作用,故细菌进入MDS,而舍去放线菌因子;微生物生物量N(MBN)与MBN/总N呈显著相关,且MBN与其他因子无显著相关,其信息相对独立,因而选择微生物生物量N进入MDS;还原性物质总量与活性还原性物质呈显著正相关,由于还原性物质与其他因子无显著相关,信息相对独立,故选择还原性物质总量进入MDS;物理性砂粒反映土壤空隙结构、土壤水分渗透性能及耕作难易以及养分转化的物理指标,且除与全N显著相关外,其余均无显著相关,其信息独立,故选择进入MDS;全N与全P均属化学指标,全N与物理性砂粒、还原性物质总量均呈显著正相关,而全P除与物理性砂粒显著正相关外,与其余因子均无显著相关,且全P也与冷浸田限制因子速效P呈显著正相关,该因子体现了MDS内的指标相关性低而与MDS外的指标相关性强的特点,故选择全P进入MDS,而舍去全N因子。基于相关分析并结合专家经验法,最终确定冷浸田土壤质量评价因子MDS由C/N、细菌、微生物生物量N、还原性物质总量、物理性砂粒、全P6项因子组成。
2.3冷浸田土壤质量评价因子MDS表征与应用
建立完善耕地质量评价体系、明确不同地力等级耕地的划分标准,是制订相关政策与法规的重要依据,也是强化执法力度的重要保障[20]。进行土壤质量评价时,评价因子的选取应全面、综合地反映土壤肥力质量的各个方面,即土壤的养分贮存、释放,土壤的物理性状和生物多样性[21]。MDS则是反映土壤质量的最少因子参数的集合。通过主成分分析、相关分析并结合专家经验筛选出的冷浸田土壤质量评价因子MDS覆盖了土壤物理、化学与生化指标。其中,化学指标包括C/N、全P、还原性物质总量因子,其表征土壤养分与水分保持、碳储藏与土壤团聚体维护以及冷浸田土壤还原因子功能;物理指标为物理性砂粒因子,其表征土壤水分与化学物质的吸附和运输;生化指标包括细菌、微生物生物量N,其表征微生物活动及养分循环通量。通过优化筛选出的MDS可用于冷浸田土壤质量评价,也适合于冷浸田改良效果的评价。李桂林等基于苏州市1985—2004年土地利用变化情况,在采样分析的两套土壤属性数据(各12个土壤候选参数集)上,得到各包含6项因子的土壤质量评价MDS及其20年尺度上的变化规律,发现MDS因子略有不同,但变化不大。其中,4项(有机质、pH、有效K、全K)相同,另外,1985年的MDS中还包括有效P、总孔隙度,2004年的MDS中还包括全P及容重。从中可以看出,冷浸田的土壤质量评价因子MDS选择与一般类型土壤质量评价MDS选择是有差别的。这与冷浸田土壤性质的特殊性分不开。如对于一般类型土壤质量评价而言,土壤还原性物质参数一般不会被选入MDS,而对冷浸田而言,土壤还原性物质对作物生长造成毒害,是限制生产力提升的重要“瓶颈”因子,故被选入MDS;同样,土壤微生物生物量N与微生物生物量C类似,其表征冷浸田土壤有机氮库的“质量”而被选入MDS。当然,当冷浸田土壤通过治理后,还原性物质下降为次要限制因素,或冷浸田通过改良演变为灰泥田、青底灰泥田或灰黄泥田等氧化型、氧化还原型土壤类型时,其土壤质量评价MDS选择可能也随之发生改变,此条件下土壤有机质、pH或可作为重要的肥力限制因子代替现有冷浸田质量评价MDS中的因子。另外,本研究冷浸田类型为发生学分类名称,其覆盖潜育性水稻土的5个主要土种类型,上述参评因子选择确定也可为冷浸田土壤系统分类土系区分提供借鉴,如青泥田、浅脚烂泥田、深脚烂泥田的土壤还原强度逐渐增加,其有机质和物理性砂粒含量也有相似趋势,因而可以根据还原性物质总量、C/N和物理性砂粒含量等诊断特性或诊断现象加以区分,同样,对于锈水田,按系统分类,可根据潜育土表层亚铁含量和还原性物质总量,划分出相应的土系。用主成分方法筛选质量评价因子,可有效减少数据冗余,但也可能存在参评土壤因子信息丢失的问题。有报道认为,通过主成分分析并结合矢量常模(NORM)的方法可能对评价因子MDS选择更完善。另外,在提出MDS的基础上,进一步通过专家咨询或模糊数学方法对各评价因子指标“好坏”进行描述并最终构建冷浸田土壤质量评价模型有待进一步研究。
3结论
酸性土壤的特点篇6
关键词茶叶;土壤改良;硫磺;草炭
中图分类号S156文献标识码A文章编号1007-5739(2015)08-0232-01
茶树(Camelliasinensis)属山茶科山茶属多年生常绿木本植物,性喜温暖湿润气候,多生长在温暖湿润的热带、亚热带和暖温带地区。茶树属于典型的喜酸性植物,其根系必须在酸性土壤下生长。
济源市地处北纬35°12′,东经112°,属于典型的温带大陆性季风气候,土壤多为石灰质土壤,pH值多在7~8之间。由于济源是茶仙卢仝故里,为弘扬卢仝茶文化,培育地方特色产业,增加农民收入,在中国农科院茶叶研究所的指导下,选择条件相对适宜的地方进行土壤改良调节,进行了茶叶栽植试验,并进行跟踪检测和茶叶栽培研究,目前茶叶长势良好,取得了初步成效。
1材料与方法
1.1试验地选择
依据茶叶生长特性,选择背风向阳、土质中性偏酸的区域进行土壤改良和种植茶叶试验,本研究选择了王屋镇清虚村和思礼镇郑坪村2个地方。两地地表耕层土壤均为弱酸性,自然环境优美,周边远离工业企业。王屋清虚试验地位于王屋山区的清虚发山村,地处两山之间,为20世纪70年代人工建造的梯田,土质为少砾质中性砂石土,周边山林茂密,山上有机质含量高,沟内山泉水充足。思礼郑坪试验地毗邻九里沟景区,三面环山,为山区自然梯田,土质为多砾质薄层砂石土和红黏土。
1.2试验材料
硫磺:S的含量≥99%,水分≤2%,砷含量≤0.0001%,细度不低于400目。草炭:pH值≤6.0,有机质≥60%,腐植酸≥10%。茶树品种选择适应性较强的龙井43、天台黄茶、北斗等品种,所有茶苗均在3月22日前栽植完成。
1.3试验方法
2013年3月初,用挖掘机对茶园土地进行深翻和改良,全园深翻80cm,在深翻前将硫磺粉1950kg/hm2均匀撒施在地表,然后进行深翻,将硫磺均匀混入土中,并平整土地,捡拾石块和杂物[1-2],共深翻改良土地4.2hm2。
土壤深翻后,按照茶园种植要求,采用双行双株条栽方式种植,大行距1.5~1.6m,小行距30~40cm,株距25cm。在茶苗定植前按规定的行株距开好种植沟,种植沟宽50cm、深30cm。开好种植沟后将草炭165~180m3/hm2均匀施入沟内(厚约5cm),并将硫磺按0.1kg/m(种植沟长度)均匀撒施在草炭表面,然后覆土回填,等待种植[3-4]。
1.4数据采集
土壤改良前,在2个试验区域共选择有代表性的5个地块,每个地块分别采集20、50、80cm3个不同深度的土样进行检测。每块地进行3点混合取样,所有地块不同深度按平均值进行记录。土壤改良60d后,每月中旬对上述5个点分别采集土样进行检测,分别于5月、6月、7月、8月、10月、11月重复采集土样进行检测,跟踪pH值变化情况[5]。
每次土壤检测后,对5个试验点数据进行原始记录,为降低试验误差,每次对不同深度数据进行算术平均,取平均值进行记录分析。
2结果与分析
将不同深度土壤pH值在坐标上进行标注,形成土壤pH值变化曲线,与对照不同土壤深度pH值进行比较。由土样检测数据(表1、图1)可以看出,由于试验地区属于典型的温带大陆性季风气候,年降雨量在600mm左右,且降雨多集中在夏季,土壤蒸发量明显大于降雨量,因此土壤逐渐碱化,并且在一定范围内随深度增加,土壤pH值逐渐增加。
在施用硫磺、草炭改良后,土壤pH值明显降低。20cm的耕层土壤,未处理前pH值已经在6.25,属于酸性土壤,并且受灌溉、降雨、耕作等农事影响,土壤pH值有所降低,但变化幅度不大;50、80cm土壤,在改良后效果显著,达到了茶叶生长的要求。
从土壤深度看,处于50cm深的土壤,由于受其他干扰因素较少,且在改良过程中硫磺、草炭等施用均匀,因此改良效果最好,pH值相对稳定均匀。
从硫磺施用时间来看,从60d开始,土壤pH值已经明显降低,在4个月后效果达到最好,在未来的连续监测中,pH值变化不大,相对稳定,并且均在茶叶生长的适宜范围,达到了预期目的。
3结论
试验结果表明,用硫磺、草炭调节土壤pH值是可行的。硫磺对土壤pH值的调节主要特点是效果持久稳定,其作用机理是硫磺施入土壤后被硫细菌氧化成硫酸酐,硫酸酐再转化成硫酸起到了调节pH值的作用,硫磺施入土壤后需要分解后才能起到调节土壤pH值的作用;草炭用于土壤改良最主要的作用是能够增加土壤的有机质。
综上所述,通过调节土壤pH值和添加土壤有机物料,可以有效地解决土壤条件对茶叶栽培的限制,为扩大茶叶种植范围,实现南茶北移,弘扬历史文化,提供切实可行的方法。
4参考文献
[1]谢兆森,吴晓春.蓝莓栽培中土壤改良的研究与进展[J].北方果树,2006(1):1-4.
[2]张昌爱,张民,曾跃春.硫对石灰性土壤化学性质的影响[J].应用生态学报,2007(7):1453-1458.
[3]湛润生,岳新丽.硫磺在石灰性土壤改良中的应用[J].山西大同大学学报,2009(1):42-44.
【酸性土壤的特点(6篇) 】相关文章:
季度工作总结范文(整理4篇) 2024-06-11
转正工作总结范文(整理10篇) 2024-05-21
数学教研组教学总结范文(整理10篇) 2024-05-20
幼儿园大班的工作总结范文(整理4篇 2024-05-15
班主任家访工作总结范文(整理4篇) 2024-05-15
慢病工作总结范文(整理7篇) 2024-04-28
学习委员工作总结范文(整理10篇) 2024-04-23
经济学与劳动经济学的关系(6篇) 2024-06-13
酸性土壤的特点(6篇) 2024-06-13
酸性土壤改良方案(6篇) 2024-06-13